Vectors:

Vector:

A vector is a matrix that has only one row - then we call the matrix a row vector - or only one column - then we call it a column vector.

A row vector is of the form: $a=\left[\begin{array}{llll}a_{1} & \mathrm{a}_{2} & \ldots & \mathrm{a}_{\mathrm{n}}\end{array}\right]$
A column vector is of the form:

$$
b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

A quantity such as force, displacement, or velocity is called a vector and is represented by a directed line segment

A vector in the plane is directed line segment. The directed line segment $\overrightarrow{A B}$ has initial point A and terminal point B; its length is denoted by $|\overrightarrow{A B}|$. Two vectors are equal if they have the same length and direction.

Component form

If v is a two dimensional vector in the plane equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}\right)$, then the Component form of v is:

$$
v=\left(v_{1}, v_{2}\right)
$$

If v is a three dimensional vector in the plane equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}, v_{3}\right)$, then the Component form of v is:

Vectors:

$$
v=\left(v_{1}, v_{2}, v_{3}\right)
$$

The numbers v_{1}, v_{2} and v_{3} are called the components of v.
Given the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$, the standard position vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ equal to $\overrightarrow{P Q}$ is
$v=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$

The magnitude or length of the vector $v=\overrightarrow{P Q}$ is the nonnegative number $|v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

The only vector with length $\mathbf{0}$ is the zero vector $0=(0,0)$ or $0=(0,0,0)$. This vector is also the only vector with no specific direction.

Ex.: Find a) component form and b) length of the vector with initial point $P(-3,4,1)$ and terminal point $Q(-5,2,2)$

Solution:

a) $v=(-5+3,2-4,2-1)$

The component form of $\overrightarrow{P Q}$ is $v=(-2,-2,1)$
b) The length or magnitude of $v=\overrightarrow{P Q}$ is $|v|=\sqrt{(-2)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{9}=3$

Vector Addition and Multiplication of a vector by a scalar

Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors with \boldsymbol{k} a scalar.

Addition:

$u+v=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$

Vectors:

Scalar multiplication: $k u=\left(k u_{1}, k u_{2}, k u_{3}\right)$
If the length of $k u$ is the absolute value of the scalar k times the length of u. The vector $(-1) u=-u$ has the same length as u but points in the opposite direction.

If $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right), u-v=\left(u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right)$
Note that $(u-v)+v=u$ and the difference $u-v$ as the sum $u+(-v)$

Ex.:
Let $u=(-1,3,1)$ and $v=(4,7,0)$, find
a) $2 u+3 v$
b) $u-v$
c) $\left|\frac{1}{2} u\right|$

Solution:

a) $2 u+3 v=(-2,6,2)+(12,21,0)=(10,27,2)$
b) $u-v=(-5,-4,1)$
c) $\left|\frac{1}{2} u\right|=\left|\left(\frac{-1}{2}, \frac{3}{2}, \frac{1}{2}\right)\right|=\frac{1}{2} \sqrt{11}$

Properties of vector operations:

Let u, v and w be vectors and a and b be scalars.

1) $u+v=v+u$
2) $(u+v)+w=u+(v+w)$

Vectors:
3) $u+0=u$
4) $u+(-u)=0$
5) $0 u=0$
6) $1 u=u$
7) $a(b u)=(a b) u$
8) $a(u+v)=a u+a v$
9) $(a+b) u=a u+b u$

Unit vectors

A vector v of length 1 is called unit vector. The standard unit vectors are:
$i=(1,0,0) \quad, \quad j=(0,1,0) \quad, \quad k=(0,0,1)$

$$
\begin{aligned}
v=\left(v_{1}, v_{2}, v_{3}\right) & =\left(v_{1}, 0,0\right)+\left(0, v_{2}, 0\right)+\left(0,0, v_{3}\right) \\
& =v_{1}(1,0,0)+v_{2}(0,1,0)+v_{3}(0,0,1) \\
& =v_{1} i+v_{2} j+v_{3} k
\end{aligned}
$$

We call the scalar (or number) v_{1} the i-component of the vector v, v_{2} the j-component of the vector v, and v_{3} the \boldsymbol{k}-component. In component form, $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is
$\overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}\right) \mathrm{i}+\left(y_{2}-y_{1}\right) \mathrm{j}+\left(z_{2}-z_{1}\right) k$
If $v \neq 0$, then
$\boldsymbol{u}=\frac{\nu}{|v|}$ is a unit vector in the direction of v, called the direction of the nonzero vector v.

Ex.:
Find a unit vector u in the direction of the vector $P_{1}(1,0,1)$ and $P_{2}(3,2,0)$.

Solution

$$
\begin{aligned}
& \overrightarrow{P_{1} P_{2}}=(3-1) \mathrm{i}+(2-0) \mathrm{j}+(0-1) k=2 \mathrm{i}+2 \mathrm{j}-\mathrm{k} \\
& \overrightarrow{P_{1} P_{2}}=\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{9}=3
\end{aligned}
$$

Vectors:

$$
u=\frac{\overrightarrow{P_{1} P_{2}}}{\left|\overrightarrow{P_{1} P_{2}}\right|}=\frac{2 i+2 j-k}{3}=\frac{2}{3} i+\frac{2}{3} j-\frac{1}{3} k
$$

The unit vector u is the direction of $\overrightarrow{P_{1} P_{2}}$.

Midpoint of a line segment

The Midpoint M of a line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point

$$
\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}, \frac{\left(z_{1}+z_{2}\right)}{2}\right)
$$

Ex.:

The midpoint of the segment joining $P_{1}(3,-2,0)$ and $P_{2}(7,4,4)$ is

$$
\left(\frac{3+7}{2}, \frac{-2+4}{2}, \frac{0+4}{2}\right)=(5,1,2)
$$

Product of vectors

$\mathrm{u} \& \mathrm{v}$ are vectors,
There are two kinds of multiplication of two vectors:
1- The scalar product (dot product) u.v. The result is a scalar.
2- The vector product (cross product) $u \times v$. The result is a vector.

1) The dot product

In this section, we show how to calculate easily the angle between two vectors directly from their components. The dot product is also called inner or scalar products because the product results in scalar, not a vector.

Vectors:

Def.: The dot product $u \cdot v$ of vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ is:

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

Note:

$$
\left.\left.\begin{array}{l}
i \cdot i \\
j \cdot j \\
k \cdot k
\end{array}\right]=1.1=1 \quad, \quad \begin{array}{c}
i \cdot j \\
j \cdot k \\
k \cdot j
\end{array}\right]=0
$$

Ex.:

a)

$$
\begin{aligned}
& (3,5) \cdot(-1,2)=3(-1)+5(2)=7 \quad \text { scalar } \\
& (3 i+5 j) \cdot(-i+2 j)=7
\end{aligned}
$$

b)

$$
\begin{array}{ll}
(1,-3,4) \cdot(1,5,2)=1-15+8=-6 & \text { scalar } \\
(i-3 j+4 k) \cdot(i+5 j+2 k)=-6 &
\end{array}
$$

Angle between two vectors

The angle θ between two nonzero vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ is given by

$$
\begin{gathered}
\vec{u} \cdot \vec{v}=|\vec{u}| \cdot|\vec{v}| \cdot \cos \theta \\
\theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot|\vec{v}|}\right) \quad \text { where } \theta \quad(0 \leq \theta \leq \pi)
\end{gathered}
$$

Ex.: Find the angle between two vectors in space

$$
\begin{aligned}
& \vec{u}=2 \bar{i}-\vec{j}+2 \vec{k} \quad, \quad \overrightarrow{\mathrm{v}}=\bar{i}-2 \vec{j}+2 \vec{k} \\
& \cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot|\vec{v}|}=\frac{2+2+4}{\sqrt{4+1+4} \cdot \sqrt{1+4+4}} \\
& \cos \theta=\frac{8}{9} \Rightarrow \theta=\cos ^{-1} \frac{8}{9}
\end{aligned}
$$

Ex.:

Find the angle θ in the triangle ACB determined by the vertices

$$
A=(0,0), \mathrm{B}(3,5) \text { and } \mathrm{C}(5,2)
$$

$$
\begin{aligned}
& \overrightarrow{C A}=(-5,-2) \quad \text { and } \quad \overrightarrow{\mathrm{CB}}=(-2,3) \\
& \overrightarrow{C A} \cdot \overrightarrow{\mathrm{CB}}=(-5)(-2)+(-2)(3)=4 \\
& |\overrightarrow{C A}|=\sqrt{(-5)^{2}+(-2)^{2}}=\sqrt{29} \\
& |\overrightarrow{\mathrm{CB}}|=\sqrt{(-3)^{2}+(3)^{2}}=\sqrt{13} \\
& \theta=\cos ^{-1}\left(\frac{4}{\sqrt{29} \cdot \sqrt{13}}\right)
\end{aligned}
$$

Orthogonal vectors

Vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ are orthogonal (or perpendicular)
if and only if $u \cdot v=0$

Ex.:

a) $u=(3,-2)$ and $\mathrm{v}=(4,6)$ are orthogonal because $u \cdot v=0$
b) $\mathrm{u}=3 i-2 j+k$ and $\mathrm{v}=2 j+4 k$ are orthogonal because $u \cdot v=0$
c) $\mathbf{0}$ is orthogonal to every vector \mathbf{u} since

$$
\begin{aligned}
0 \cdot u & =(0,0,0) \cdot\left(u_{1}, u_{2}, u_{3}\right) \\
& =0
\end{aligned}
$$

Properties of the Dot product

If u, v and w are any vectors and c is a scalar, then

1) $u \cdot v=v \cdot u$
2) $(c u) \cdot v=u \cdot(c v)=c(u \cdot v)$

Vectors:
3) $u \cdot(v+w)=u \cdot v+u \cdot w$
4) $u \cdot u=|u|^{2}$
5) $0 \cdot u=0$

Vector projection

Vector projection of u onto v

$$
\begin{equation*}
\operatorname{proj}_{v} u=\left(\frac{u \cdot v}{|v|^{2}}\right) v \tag{1}
\end{equation*}
$$

$\operatorname{proj}_{v} u$ ('The vector projection of \boldsymbol{u} onto $v^{\prime \prime}$)

Ex.:
Find the vector projection of $u=6 i+3 j+2 k$ onto $v=i-2 j-2 k$ and the scalar component of u in the direction of v.

Solution:

We find $\operatorname{proj}_{v} u$ from eq.(1):
$\operatorname{proj}_{v} u=\left(\frac{u \cdot v}{|v|^{2}}\right) v=\frac{u \cdot v}{v \cdot v} v=\frac{6-6-4}{1+4+4}(i-2 j-2 k)=\frac{-4}{9}(i-2 j-2 k)=\frac{-4}{9} i+\frac{8}{9} j+\frac{8}{9} k$
We find the scalar component of u in the direction of v from eq.(2):

Problems:

1) Let $u=(3,-2)$ and $v=(-2,5)$. Find the a) component form and b) magnitude (length) of the vector.
1. $-2 u+5 v$
2. $\frac{3}{5} u+\frac{4}{5} v$
2) Find the component form of the vector:
a. The vector $\overrightarrow{P Q}$ where $P=(1,3)$ and $\mathrm{Q}(2,-1)$.
b. The vector $\overrightarrow{O P}$ where O is the origin and P is the midpoint of segment $R S$, where $R=(2,-1)$ and $\mathrm{S}=(-4,3)$.
c. The vector from the point $A=(2,3)$ to the origin.

Vectors:
d. The sum of $\overrightarrow{A B}$ and $\overrightarrow{C D}$, where

$$
A=(1,-1), \mathrm{B}=(2,0), \quad C=(-1,3) \text { and } \quad \mathrm{D}=(-2,2)
$$

3) Let v, u and w as in the figure: find a) $u+v$, b) $u+v+w$, c) $u-v$ and d) $u-w$

4) Find the vectors whose lengths and directions are given. Try to do the calculation without writing:

Length
Direction
a. 2
i
b. $\sqrt{3}$

- k
c. $\frac{1}{2}$
$\frac{3}{5} j+\frac{4}{5} k$
d. 7
$\frac{6}{7} i-\frac{2}{7} j+\frac{3}{7} k$

5) Find a) the direction of $\overrightarrow{P_{1} P_{2}}$ and \mathbf{b}) the midpoint of line segment $P_{1} P_{2}$.
a. $\quad P_{1}(-1,1,5)$ and $P_{2}(2,5,0)$
b. $\quad P_{1}(0,0,0)$ and $P_{2}(2,-2,-2)$
6) Find $v \cdot u,|v|,|u|$, the cosine of the angle between v and u, the scalar component of \boldsymbol{u} in the direction of \boldsymbol{v} and the vector $\operatorname{proj}_{v} u$.
a) $v=2 i-4 j+\sqrt{5} k, u=-2 i+4 j-\sqrt{5} k$
b) $v=\left(\frac{3}{5}\right) i+\left(\frac{4}{5}\right) k, u=5 i+12 j$
c) $v=-i+j, u=\sqrt{2} i+\sqrt{3} j+2 k$
d) $v=5 i+j, u=2 i+\sqrt{17} j$

Mathematics: Lecture 6
Vectors:
e) $v=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right), u=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{3}}\right)$
7) Find the angles between the vectors:
a) $u=2 i-2 j+k, v=3 i+4 k$
b) $u=\sqrt{3} i-7 j \quad, \quad v=\sqrt{3} i+j-2 k$
c) $u=i+\sqrt{2} j-\sqrt{2} k \quad, \quad v=-i+j+k$
8) Find the measures of the angles between the diagonals of the rectangle whose vertices are $A=(1,0), \mathrm{B}(0,3), \mathrm{C}(3,4)$ and $\mathrm{D}(4,1)$

References:

1- Advanced Engineering Mathematics (Erwin Kreyszic)- $8^{\text {th }}$ Edition.
2- Calculus (Haward Anton).
3- Advanced Mathematics for Engineering Studies (أ. رياض احد عزت)

